En el pasado los robots eran situados en la cadena de producción para realizar tareas muy sencillas y repetitivas. Pero eso está cambiando. Los avances en el diseño y en la programación de los autómatas les permiten realizar cada vez tareas más complejas, que requieren de una destreza superior.
En los años ochenta del siglo pasado, el experto del Robotics Institute de la Carnegie Mellon University Hans Peter Moravec formuló un principio según el cual resulta muy complejo programar en un robot nuestra capacidad de percepción y nuestras habilidades sensomotoras, y, en cualquier caso, afirmaba, es mucho más difícil que reproducir las habilidades intelectuales de los humanos. En suma, es más sencillo crear algoritmos de inteligencia artificial para llevar a cabo tareas basadas en el cálculo y las matemáticas, que robots inteligentes que sean capaces de interactuar físicamente con el entorno.
Los fabricantes de robots suelen vender el término “destreza” como una ventaja competitiva del producto. Sin embargo, es complicado establecer un nivel de destreza estándar –incluso los propios expertos suelen manejar distintas definiciones de este concepto- y, resulta quizá más adecuado, fijarse en las tareas específicas que debe realizar la máquina a la hora de establecer sus habilidades.
De esta forma, de cara a determinar el nivel de destreza que necesita un robot para manipular objetos, hay que tomar en consideración cuestiones como las siguientes:
- El tamaño de los objetos: ¿cómo son de pequeños? ¿son todos del mismo tamaño o no? ¿cómo afecta lo anterior a la capacidad de alcanzarlos del robot?
- La forma de los objetos: ¿qué forma tienen? ¿tienen complicadas aristas o son una forma geométrica simple? ¿son esféricos y, en consecuencia, difíciles de agarrar?
- La estrategia de agarrado: ¿existen distintas formas para agarrar el objeto? ¿se trata de objetos delicados que requieran una manera especial de ser manipulados?
- Alcance: ¿cuánto tiene que alargarse el robot para alcanzar los distintos puntos de su espacio de trabajo? ¿es necesario utilizar todo el espacio de trabajo del robot o solo una parte? ¿debe aproximarse a una localización determinada desde distintos ángulos?
- Velocidad: ¿a qué velocidad debe realizar cada acción?
La complejidad que requiere preparar a un sistema inteligente para realizar determinadas acciones físicas podría justificar que las ocupaciones relacionadas con ellas sigan siendo desempeñadas por trabajadores humanos. Sin embargo, todo esto está cambiando y, poco a poco, se podría estar ampliando el espectro de tareas que puede desempeñar un robot.
Por una parte, la utilización de polímeros en la fabricación de extremidades robóticas, que pueden expandirse y aplicar la medida precisa de presión a los objetos, permite que las nuevas generaciones agarren y levanten objetos que sus predecesores no podían. Además, la inteligencia artificial permite a los autómatas procesar y analizar la información del entorno que reciben a través de sensores y cámaras. Pueden aprender de sus errores y mejorar su ejecución.
La empresa Boston Dynamics es un buen ejemplo del salto cualitativo que está realizando la ciencia robótica. Sus modelos cada vez se desenvuelven mejor en entornos desestructurados, como pueden ser la superación de obstáculos y desigualdades del terreno. Un ejemplo de ellos es el “ciberperro” Spot, el primero de sus desarrollos que sale a la venta, que es capaz de moverse a una velocidad de 1,6 metros por segundo, y desplazarse por lugares complicados en superficies de todo tipo. Además, si se cae o vuelca es capaz de levantarse por sí mismo, sin ayuda.
Por otro lado, la empresa de Google Alphabet está trabajando, dentro del laboratorio The Moonshot Factory, en la iniciativa The Everyday Robot Project, que pretende desarrollar un robot capaz de aprender y de desenvolverse en entornos desestructurados. Los robots que persigue este proyecto están pensados para operar con seguridad en entornos humanos, es decir, en aquellos en los que las cosas cambian de lugar, donde existen obstáculos y en los que las personas pueden aparecer inesperadamente. Para ello, la máquina debe poder comprender el espacio en el que trabaja e ir adaptándose a él a través de la experiencia.
La investigación llevada a cabo en las dependencias de Alphabet se basan en tres pilares: percepción, manipulación y navegación. La percepción a través de cámaras en la cabeza del autómata, que recogen información para que sea asimilada por el machine learning, el sistema de inteligencia artificial que incorpora el sistema. Manipulación de todo tipo de objetos, gracias a una destreza muy fina. Finalmente, navegación, pues el robot utiliza los datos que recogen sus sensores para poder entender lo que “ve”, lo que “oye”, y el lugar que ocupa en el mundo, de forma que pueda realizar tareas útiles entre las personas de forma segura.
No hay comentarios:
Publicar un comentario
Comenta lo que quieras